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We investigate three different numerical representations for nuclear 
mean-field calculations: finite differences, Fourier representation, and 
basis-splines. We compare these schemes with respect to precision and 
speed. It turns out that Fourier techniques and basis-splines are much 
superior in precision to finite differences. The Fourier representation in 
connection with the fast Fourier transformation is advantageous for 
large grids whereas matrix techniques, derived either from basis-splines 
or from Fourier representation, are preferable for smaller grids. c 1992 

Academic Press. Inc 

1. INTRODUCTION 

Mean-field calculations have been widely used in nuclear 
physics for two decades. They are the many Hartree-Fock, 
deformed Hartree-Fock, and time-dependent Hartree- 
Fock (TDHF) calculations based on the nonrelativistic 
Skyrme force model [l, 21. And there seem to be still 
several open questions which deserve further investigation 
in these models [3]. There are, on the other hand, similar 
calculations based on the relativistic mean-field model 
[&63. A representation of the wavefunctions on a 
coordinate-space (or momentum-space) grid is used in a 
dominant fraction of the codes for these mean-field calcula- 
tions: This representation is preferable because it provides 
a very easy and transparent way of programming the 
Schriidinger equation. It is also a very efficient technique 
and it is well adapted for vectorization. 

The fastest and simplest coordinate-space technique is the 
representation of the second derivatives in the kinetic 
energy operator by a three-point finite difference formula. 
An optimum within the three-point precision can be 
achieved from variation on the grid, i.e., variation of the 
discretized action [7]. This technique has been applied 
successfully to nonrelativistic nuclear TDHF models with 
[3] and without [S] spin-orbit force. And it has been also 
applied in relativistic deformed Hartree-Fock calculations 
[9]. However, the relativistic models have revealed most 
clearly the severe limitations of the simple finite difference 
approaches with three-point precision [lo]. The reason for 
the deficiencies is the spatial variation of the effective mass 
in the kinetic energy. These variations are particularly 
demanding concerning numerical precision. The problems, 
however, are also present in nonrelativistic models of 
nuclear structure. A further problem occurs in relativistic 
calculations where the three-point formula induces 
“fermion-doubling” [12]. Thus one needs in any case to 
improve the numerical representation. But this should be 
done in a way which preserves the simplicity of a 
coordinate- (or momentum-) space representation and 
which keeps the numerical expenses low. 

We will study three alternatives to the three-point finite 
difference formula: first, finite difference schemes with 
higher order, second, a momentum-space representation 
with the fast Fourier transformation (FFT) to connect 
coordinate- with momentum-space [ll]; and, third, a 
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representation of the wavefunction in terms of basis-splines 
(B-splines), which looks like a coordinate-space representa- 
tion as local operators are concerned and which uses matrix 
multiplication to represent derivatives [12]. The FFT 
techniques have been used for a long time in large scale 
nuclear TDHF calculations as well as in the relativistic ones 
[ 131. The B-splines have been presented extensively in 
Ref. [ 143. An application for solving the Dirac equation is 
presented in [ 121. And meanwhile they are also being used 
for handling nonrelativistic TDHF with spin-orbit force 
Cl51. 

It is the aim of this paper to provide a critical comparison 
of these three methods with respect to numerical precision 
and efficiency. We consider a Hamiltonian which arises 
typically in nuclear mean-field calculations. It is dis- 
tinguished by a strongly varying effective mass in kinetic 
energy. We also briefly consider models with constant mass, 
as occur in simple nuclear models or in effective density 
functionals for atomic physics calculations [ 163. Finally we 
look at a special form of relativistic models, where spin and 
momentum are contracted to a scalar which can possibly 
simplify the handling. It will turn out that the choice of the 
optimum numerical representation depends very much on 
the particular application and to a certain extent on the 
computer system used. Therefore the typical Hamiltonians 
as well as the typical methods for static and dynamic 
calculations are outlined and all detailed material for a deci- 
sion on the optimal method in a given case are provided. 
This has the welcome side effect that the present paper is 
also a short summary of numerical techniques in Hartree- 
Fock and time-dependent Hartree-Fock calculations. The 
considerations on efficiency and speed have been based on 
actual test runs on two vector machines, an IBM 3090 VF 
and a CRAY X-MP. We thus hope also to give some idea of 
the machine dependence of a decision for a numerical 
scheme. 

The paper is outlined as follows: in Section 2 we present 
the typical Hamiltonians and give a survey of the possible 
solution schemes for static and dynamic calculations. In 
Section 3, we list the various dimensionalities which arise in 
practice. In Section 4, we give a short survey of the various 
gridding techniques in coordinate- and momentum-space. 
In Section 5, we discuss the question of precision of the 
various gridding techniques. And in Section 6, we estimate 
and compare the speed of the various methods extensively. 

2. THE TYPICAL APPLICATIONS 

2.1. The Hamiltonian 

The most general mean-field Hamiltonian in nuclear 
physics applications has the form 

h = pB(r) .p+ W(r). (p x c) + V(r), (1) 

where the potential V, the spin-orbit potential W, and the 
inverse effective mass B all depend on the occupied single- 
particle states. It is our experience that this self-consistency 
has no effect on the numerical stability within the iterative 
schemes discussed below. Therefore we can consider for the 
purpose of our tests an external field problem, where the 
potentials and masses are readily given as in a nuclear shell 
model. We shape the fields to have a Saxon-Woods form 
with the proper shell oscillations on top [ 171: 

v= v 1 +A.cos(2k,r) 
O 1 + exp((r - R)/a)’ 

fi2 1 + A, cos(2k,r) 
B=G+ B” 1 +exp((r-R)/cr)’ (2) 

w=o 

The parameters of the model potential (2) have been chosen 
to simulate a Hartree-Fock Hamiltonian in a small nucleus: 

V, = - 70.0 MeV, A,=0 

B, = ti2/2m, A,= -0.5 (3) 

R = 2.0 fm, 0 = 0.3 fm, kp= 1.35 fin-‘. 

The effective mass fi2/2m/B is particularly small (x0.5), the 
shell oscillations (parameter A,) are very large, and the 
surface thickness (T is extremely small in order to provide a 
most critical test of the numerical representations. The spin- 
orbit force W has been neglected in the present considera- 
tion. It has little effect on the precision compared to the 
most critical strong variations of the effective mass. 

In some cases, one considers less demanding mean-field 
Hamiltonians. The simplest approach is to neglect the 
effective mass and to use the constant nucleon mass. This 
yields the approach 

h=gp’+ V(r). 

An example for this kind of schematic force is the 
Bonche-Koonin-Negele force which has been invented and 
used many times as a schematic model for nuclear TDHF 
dynamics [ 181. The form (4) is also appropriate in atomic 
mean-field models as, e.g., for the calculation of liquid metal 
clusters [ 191 using the Lundquist energy functional [ 163. 

Spin and momentum are particularly connected in simple 
relativistic models such that the effective mean-field 
Hamiltonian becomes [6] 

h = (r. pB(r) IJ. p + V(r), (5) 

where B and V behave typically as given in Eq. (2). The 
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scalar contraction of (r and p can simplify the evaluation in most promising and most typical time step for the TDHF 
the momentum-representation, and moreover, the spin- propagation, 
orbit force W = VB is already included in the Hamiltonian 
(5) at no extra expense. 

),(t+at)=(l+~6th)~1(1-~6th)~,(t). (10) 

2.2. Damped Gradient Iteration for the Static Case 

In the static case, one has to solve the stationary 
Hartree-Fock equation 

W, = &,ICI,, (6) 

where h depends implicitly on all occupied single particle 
states $,. It is most efficiently solved with the damped 
gradient iteration [20] 

$‘“+“=O{[l-9(h-(h))]$T’} a 

9 = (fi2,2m;op2 + E,’ (8) 

where (h) is the expectation value of h and 9 is the kinetic 
energy damping with numerical parameters x0 and E,, to be 
chosen such that stable and fast convergence is achieved. 
The choice depends on the actual system and one needs to 
do a few experiments in order to find the optimum. 
Reasonable starting values are x0 z 0.8 and E, z - 0.5 Vmin 
with Vmin being the minimum of V(r). The 0 means 
orthonormalisation of all occurring single particle wave 
functions. In practice, we use Gram-Schmidt ortho- 
normalisation. Thus the static step consists of three 
substeps: first, Hamiltonian action ht+b; second, damping 
9 cc l/(p2 + const); and third, orthonormalization. 

The damped gradient iteration (7), (8) can also be 
applied to constrained Hartree-Fock calculations which are 
used to construct deformation-energy surfaces [21]. Thus 
the considerations of this paper apply to a very wide range 
of microscopic models. 

where h is to be taken at half the time step h = h(t + &/2). 
This requires an extra trial shot to $,(t + 6t/2). One may 
alternatively consider h = i(h(t) + h(t + dt)) of one is going 
to compute the inverse in step (10) iteratively anyway. Note 
that there is no orthonormalization required in the 
Crank-Nicholson step because the propagation operator in 
Eq. (10) is manifestly unitary and this automatically 
guarantees proper orthonormalization of the propagated 
wave functions. 

The inversion is comparable to the damping in the static 
case, except for the fact that the full mean-field Hamiltonian 
h is used here. The inversion is still feasible in one 
dimension. In higher dimensions, one may either use an 
iteration scheme. 

with the damping 9 as given in Eq. (8) and with A = 
1 + (i/2) 6th. Or, as a cheaper alternative, one may use 
separable approximations to the inversion. The possible 
separability depends on the actual situation. It could read, 
for example, in three dimensions and without spin-orbit 
force 

which factorizes the full inversion into three successive 
one-dimensional steps. 

2.3. Time Steps for TDHF 
3. THE VARIOUS DIMENSIONS 

The various dimensionalities considered are: 
In the dynamic case, one has to solve the TDHF equation 

1 D Cartesian. For this case we have r -P x, $(r) + ICI(x), 

I- ad,(t) = W,(t). (9) and the Hamiltonian becomes simply 

The problem here is that there is a wider range of strategies h=@,B(x)jj,+ V(x). (13) 

for the time step. Predictor-corrector schemes have often 
been used in connection with the FFT representation [ 111, The inversion in the damped gradient step (7) and in 

the simplest explicit Euler step has also been used under the the Crank-Nicholson step (10) can be done exactly by 

name imaginary-time method, or straightforward power- inversion of the corresponding matrix. 

law expansions of the time-evolution operator e-ih(‘--ro’ are 1D spherical. We now have three-dimensional 
considered as improvements of the imaginary-time method dynamics, but reduced by symmetry to t&r) + 
[22]. Here we consider the Crank-Nicholson method as the (R,(r)/r) Y,,,J8, 4). The radial Hamiltonian and the 
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damping operator for the reduced wave function R,(r) is The inversion can be done approximately with a separation 
then simply similarly to the 2D axial case: 

1(1+ 1) 
h=B,B(r)Br+B(r)T+ V(r), pr= -i-$ (14) 

(15) 

Note that the Hamiltonian and the damping operator 
depend on the angular momentum of the wavefunction. The 
inversions can be done as in the previous case. 

2D axial. In that case, the three-dimensional dynamics 
is reduced only to $(r) +qS,(r, z) exp(-imd). The 
Hamiltonian and-the damping for the q5,,,(r, z) then are 

h = fi,B(r, z) BZ + i @JrB(r, z) fi,) 

+ B(r, z) $+ V(r, z) 

9=xX, 

(16) 

(17) 

The inversion is now complicated by the fact that the full 
matrix in r-z-space is rather large. One can simplify the 
inversion of the damping operator by a separable approach: 

Lg,= 1 > (18) 

The inversion in the Crank-Nicholson step (10) may be 
separated similarly if there is no spin-orbit force [S]. One 
has to go up to a fivefold separation in cases with spin-orbit 
force [ 31. There may be situations where it is more efficient 
to use the exact inversion in the CrankkNicholson step. 
Then one may use the iterative inversion (11) with the 
separable approach (18) for the damping therein. 

3D Cartesian. The kinetic energy separates in the three 
directions. The Hamiltonian and the damping then are 

9 -2 9.y?,,.9:, 
0 

h2 
(21) 

cq= 1 
:‘( 

j&T+1 2 
> 

ie {x, y, z}, 
0 

A sevenfold separation comes into play if the spin-orbit 
force is included. 

4. THE GRIDDING TECHNIQUES 

There are essentially three different ways of representing 
a wavefunction numerically: either on a grid in coordinate- 
space, or on a grid in momentum-space, or in a basis of 
analytically given functions (e.g., a basis of harmonic 
oscillator functions is often used). The coordinate- or 
momentum-space representations with equidistant grids 
have turned out to be very efficient in saturating systems, as, 
e.g., nuclei, metallic clusters, or liquid ‘He. They have the 
additional advantage of providing a straightforward 
programming style and simple vectorization. We thus 
concentrate the following considerations to coordinate- and 
momentum-space representations. In the following we will 
briefly present the typical gridding techniques. 

4.1. Coordinate-Space Representation 

The wave function is stored and handled on a discretized 
and finite grid in coordinate-space, i.e., 

* = *(r,L (22) 

where i labels the grid-points. We will only discuss equi- 
distant grids. This reads, e.g., for one spherical dimension, 
ri = i Ar, i = 0, . . . . N, and similarly for the other dimensions. 

The action of the local operators V(r) and B(r) is a simple 
multiplication in coordinate-space representation, e.g., 
( V$)(ri) = V(r,) $(ri). All the complicated work comes in 
with the momentum fi,, where v labels here, and in the 
following, one of the components x, y, z, or r, depending on 
the dimension of the problem. We can represent it in general 
as a matrix in the coordinate-space grid 

(dlyIcl)(ri) =C (?,:.)v ll/(r.,). (23) 

The action of the Hamiltonian is then 
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It obviously requires two matrix multiplications per spatial 
dimension if the inverse effective mass B depends on r. The 
number of matrix multiplications remains the same if we use 
the alternative form for the Hamiltonian, 

Y Y 

The form (25) is advantagous for poor representations of 9, 
as, e.g., finite differences of third order, and if B does not 
vary too much. The more symmetric form (24) is generally 
to be preferred. 

There are many variants of coordinate-space representa- 
tions which are distinguished by different schemes to 
approximate the momentum operator 9. Some of them will 
be presented in the following subsections. 

4.1.1. Finite Difference Schemes 

The standard approach to (LY,,)~~ is to use the well-known 
finite difference formulas of order 3, 5, 7, etc. for d/dr,, or 
d2/drf; see, e.g., [23]. It is to be noted that the finite 
difference formula for d/dr, is less precise than the finite 
difference formula for d2/drt of the same order. Thus one 
should use the form (25) for the Hamiltonian and carry two 
sparse matrices, one for (??z)li and one for (P”),-. This is 
clearly necessary for three-point precision, it is quan- 
titatively advantagous for five-point precision, and it is a 
matter of taste for seven-point and higher precision. 

The advantage of the finite difference schemes is that one 
obtains sparse matrices for 9” or 9’:. The expense then 
grows only linearly with one spatial dimension. However, 
one should not increase the order arbitrarily because 
the usual finite difference formulas become increasingly 
sensitive to noise in the numerical data. Using fifth order is 
still a fairly robust scheme. 

4.1.2. B-splines 

A more robust representation of the derivative matrix is 
obtained from using B-splines [12, 141. One starts with a 
representation of the wavefunctions and potential fields as 
superpositions of B-splines. The B-splines can be applied to 
differential equations either using the Galerkin method, 
which in this case corresponds to a minimization of the 
expectation value of the Hamiltonian, or in the collocation 
approximation, in which the differential equations them- 
selves are solved on a set of collocation points in space. The 
Galerkin method, corresponding essentially to a basis 
expansion in the full set of B-Splines in all three coordinate 
directions, cannot easily be decomposed into one-dimen- 
sional matrix manipulations, while, as shown below, this is 
possible for the collocation method, so that the latter will 
be studied exclusively in this paper. In this case a local 
representation in coordinate-space emerges, where now the 

derivative matrix $ is a fully packed matrix for each order 
of the B-splines used. (This occurs because a matrix 
inversion is involved.) Furthermore, the robustness of the 
B-splines allows increasing the order arbitrarily, without 
running into problems with numerical noise. Thus it is 
advisable to use representations of high orders. The high 
precision of the derivatives $ then allows using the more 
symmetric form (24) for the Hamiltonian. The local 
operators V and B are handled as simple local products in 
coordinate-space. The collocation approximation limits the 
precision of the representation as we will see in the explicit 
tests later. 

4.1.3. Fourier Definition of the Momentum 

A well-established, very robust, and the most precise 
definition of the momentum on a grid is the Fourier 
representation, 

The 9” is the Fourier transformation in the v-direction and 
k, stands for a simple multiplication in Fourier space. 9,: ’ 
will denote the backward transform in the following. The 
Fourier definition of by can be handled in two ways. Either 
one uses the form (26) directly which means to perform 
forward and backward Fourier transformations explicitly, 
whenever p, is required, or to combine the operations into 
the matrix (P”), once and forever; i.e., one initializes 9” by 
(q,),-= 9;‘tik,e for each v-direction required. In the lat- 
ter case, one obtains a Fourier definition of the momentum 
matrix (P,,)ii, but the further handling of the momentum as 
a matrix is technically identical to the approach using (PV)ij 
generated from B-splines. The difference is only in the setup 
of the matrix (9$)ii. 

4.2. Momentum-Space Representation 

One can also handle and store the wave functions in 
momentum-space, i.e., $ = q(k). Coordinate- and momen- 
tum-space are connected by complex Fourier trans- 
formations. One may reduce these to the simpler sin- or 
cos-transformations if the wavefunctions have well-defined 
reflection symmetry about x = 0. In any case, the Fourier 
transformation is numerically very efficient to handle 
with the well-known fast Fourier transformation (FFT). 
The action of b becomes a simple product with J? = k in 
momentum-space. The local operators are the costly part in 
the momentum-space representation. They are evaluated as 
B V(r) F ~ ’ and similarly for B. Thus they require one 
forward and one backward Fourier transform. 

The analogous transformation for the axially symmetric 
case is the Bessel transformation, G,(k) = s drrJ,(kr) 
x e,,,(r), where m is the angular momentum along the 
z-axis. And for the spherical radial coordinate it reads 
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cm = j drr?,(kr) b+,(r), where 1 is the orbital angular 
momentum and the j, are the spherical Bessel functions. 
There are no fast schemes for these two transformations. 
Each transformation counts as one full matrix multiplica- 
tion. Therefore, the momentum-space representations are 
not very useful in the axial or spherical case. 

The Fourier basis gives an arbitrarily precise representa- 
tion of the kinetic energy. The maximum kinetic energy for 
a given grid size is much higher than in other comparable 
griddings and the high end of the spectrum is rarely 
exploited. Thus one may cut off the wave functions in 
momentum-space, see Fig. 2 in the next section. As a rule of 
thumb, a cutoff in Ikl at half the maximum momentum is 
usually a good compromise between speed and precision 
and gives a dramatic reduction to 7 % of the phase space in 
the 3D Cartesian case. Note that this reduction requires a 
special storage algorithm (pointers) for the wave function in 
the three-dimensional momentum-space. 

5. THE TEST OF THE PRECISION 

In a first step, we have investigated the precision of the 
various representations as function of the stepsize. The 
testcase was the Hamiltonian (1) with the potentials (2) for 
radial symmetry and dependence on the radius only (1D 
spherical). The potential parameters are given in Eq. (3). In 
Fig. 1 we show the single particle energy of the Is,,, state in 
the chosen spherical model as function of the grid spacing 
Ar for the various representations discussed above. We see 
that the usual third-order finite difference scheme yields a 
terribly bad precision. One can easily gain substantial 
improvements by increasing the order of the finite difference 
scheme. Fifth order already provides a fair approach if one 
uses small enough grid spacing Ar. Higher order would be 

Ar 
FIG. 1. Single particle energy of the Is,,, state from the Hamiltonian 

(l), (2) with parameters (3) as function of the radial grid spacing Ar for 
various gridding techniques: finite differences (dotted lines) of various 
orders as indicated; B-splines (dashed lines) of various orders as indicated; 
and Fourier representation (full line) indicated by the label FFT. 

desirable. But then one may run into problems with stability 
in large scale applications because the higher order finite dif- 
ference formulas become increasingly sensitive to numerical 
noise in the wavefunctions. Thus the preferable choice with 
finite differences is to use a fifth-order scheme and small 
enough grid spacing Ar. 

The third-order B-spline representation is as poor as the 
third-order finite difference scheme. But the higher orders 
improve faster, with final precision reached already at 
seventh order. Note that it is unproblematic with the 
B-splines to go to every desired order because the scheme is 
robust against noise and one needs to handle full matrices 
anyway. One may be a bit surprised that the precision 
ceases to improve after the seventh order. The reason for 
this behaviour is the collocation approximation which 
limits the precision independent of the quality of the kinetic 
energy. Every further improvement with B-splines would 
require nonlocal representations for potential fields. One 
should keep in mind this option for further numerical 
development. 

The Fourier representation gives very good precision 
already at fairly large grid spacings, Ar. The quality is of the 
order of the best B-splines or even slightly above. A feature 
which has not been visualized in Fig. 1 is that the precision 
of the Fourier representation is independent of a cutoff 
in momentum-space (Fig. 2) down to kinetic energy 
4i2k2/2m = 150 MeV which corresponds to half the maxi- 
mum momentum for Ar = 0.6 fm. Thus the kinetic energy 
could live very well with a grid spacing Ar z 1.2 fm, but 
again the local potentials limit the precision, similar to the 
case of the B-splines. 

The comparison of precision based on Fig. 1 has shown 
poor precision for the finite difference schemes, and equally 
high precision for both the Fourier representation and the 
B-splines. It is necessary to discuss the actual computing 
times in order to estimate the efficiency of the schemes. 

-10 
c - Ar=O.Efm 

I 

0 20 40 60 80 
% of cutoff components 

FIG. 2. The energy of the Is,~, state from the Hamiltonian (l), (2) 
with parameters (3) in dependence on the cutoff in momentum-space for 
two grid-sizes as indicated. 
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6. ESTIMATES OF COMPUTING TIMES TABLE I 

The best test of computing times is, of course, to write a 
code for each scheme in full dimensionality. This is very 
cumbersome. The other extreme is a simple estimate by 
counting floating point operations. This is too simplistic. 
We have decided to follow an intermediate procedure: We 
first evaluate realistic computing times for the basic opera- 
tions, i.e., matrix multiplication or FFT in one dimension, 
and then evaluate the required number of these basic opera- 
tions in higher dimensions. This allows us to take into 
account, to some extent, vectorization features and the gain 
by using optimized system routines of a computer. This is, 
of course, still a rough estimate because extrapolating 
results from one dimension to more dimensional cases 
corresponds to straightforward programming. In higher 
dimensions, it may very well be possible to obtain addi- 
tional gains in speed by rearranging loops and adjusting the 
computed partitions to cache-size or register-size, etc. It is 
obvious that such a comprehensive comparison of the 
best optimized codes for each scheme and, in each case, 
of dimensions and Hamiltonians is a cumbersome and, 
perhaps, useless task. What we need is an a priori estimate 
of the optimum method before starting the very lengthy and 
detailed setup of a large-scale program and its optimization. 
Thus our working hypothesis is: not knowing what the 
possible advantages of hand-optimizing for the various 
schemes are, we assume equidistribution of the gains and 
live with the simple estimate as given in the following. 

Computing Times d in CPU Seconds for 10,000 Repeated 
Operations Sl/l for gFFFT or p$ for &n5 and gMMatr with Varying 
Grid Size N and for a Complex Wavefunction ti 

IBM 3090 VF CRAY X-MP 

Compiled System 
System routine code routine Compiled code 

N &T gFFDS ‘6vf.w ‘%FT e~atr &FFT &m &FFT &FD~ ‘&fatr 

8 0.53 0.34 0.42 0.5 0.28 0.12 0.06 0.52 0.07 0.66 
16 0.63 0.38 0.62 1.0 0.46 0.14 0.1 1 0.96 0.07 1.32 
32 0.92 0.42 1.18 2.0 1.02 0.21 0.28 1.80 0.08 2.97 
64 1.17 0.52 2.86 4.5 2.60 0.43 0.92 3.63 0.09 8.69 

128 1.86 0.74 12.30 9.0 160.00 1.15 3.73 7.74 0.13 25.93 
256 1.18 3.50 14.41 17.18 0.21 82.36 

Nofe. The index FFT explains itself, the index FD5 means the hnite 
difference scheme of fifth order and the index “Mat? means full matrix 
multiplication which applies for the B-spline representation as well as a 
Fourier representation of the matrix 8. “System routine” means that an 
optimized subroutine from the system library of each machine was used, 
whereas “compiled code” means code generated from compiling Fortran 
source code using the optimizing compiler on each machine. 

One sees from the above discussion that an estimate of 
computing times becomes machine dependent. We will 
discuss in the following two mainframe computers which 
both provide vectorizations, namely an IBM 3090 with 
vector unit and a CRAY X/MP. Both machines are used 
with one processor only. 

simple compiled Fortran source code. Thus we have entered 
the more favourable case for the option FD5 in Table I. We 
always will use the more optimal routines in the composed 
estimates of expense in the subsequent subroutines. This 
means that we use system routines in general, except for the 
finite differences (FD5) on the CRAY, where we use the 
faster compiled code. 

6.1. Computing Times for the Basic Operations 

We have compared the computing times for the FFT, for 
full matrix multiplication, and for the sparse matrix multi- 
plication of the finite difference scheme of fifth order. The 
result is shown in Table I. Although the table serves mainly 
as input for the estimates of expenses in the following sec- 
tion, a few interesting features may be seen directly here: 
The expense of the FFT, 4&-, indeed grows slower with N 
than the expense of the matrix operation, gMatrr as expected. 
But note that the FFT is not faster than matrix multiplica- 
tion at low N. The fifth-order finite difference matrix 
behaves similarly in that it does not yield much of an advan- 
tage aver the full matrix multiplication at low N. But it 
becomes substantially faster than any other scheme at very 
high N. 

There are further interesting differences between the two 
machines. The IBM seems to optimize the FFT better than 
the CRAY, at the level of the system routines. This hints at 
different vectorization features in the two machines. The 
relation of system routines to user-written routines seems to 
be more favourable for the CRAY. We do not know whether 
this is due to a better optimization of system routines on the 
CRAY or a better optimizing compiler on the IBM. 

It is to be noted that the system routine for multiplication 
with sparse matrices on the CRAY is much slower than a 

As a note aside, we always have used full matrix multi- 
plication or full complex Fourier transformation. One may 
expect some gain in speed by exploiting hermiticity of the 
momentum matrices or symmetry- and reality-restrictions 
in the Fourier transformation. The problem is that system 
routines for multiplication with symmetric matrices have 
not been readily available in all cases. And negligible gain 
(if not loss) was observed in those cases where we could 
use symmetry. Very probably we again would run into 
problems with optimization and vectorization which would 
require a very detailed hand-optimizing of the code. Thus 
we did not try to include symmetry considerations into our 
test, again recalling our working hypothesis that the 
possible gains will be equidistributed amongst all the 
methods. 
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6.2. 3D Cartesian 

62.1. Action of the Hamiltonian 

The Fourier transformation for a three-dimensional 
wavefunction $(x, y, z) into the transformed $(k,, k,, kZ) 
is separated in three successive transformations in each one 
of the three directions. This means that a three-dimensional 
Fourier transform requires 

6&L N.,., N,) = NrN,Jm-Wz) + NzN,4,,,(N,a) 
+ NvNzGdK)> (27) 

where &FFFT (N) is the expense of one-dimensional FFT as 
given in Table I. The action of the Hamiltonian (19) 
separates in the three derivatives: 

We neglect the trivial actions of B or V in coordinate-space 
and of k, in momentum-space, so that the expense for one 
Hamiltonian step with variable inverse mass B is 

The situation is much more favourable for a constant 
inverse mass, for which the kinetic energy becomes 
(fi2/2m) k2 and can be evaluated directly in momentum- 
space and it remains for the expense 

& m,m,m(Nr> N.v, N,) 

=&‘V’GTT(N,) + NzN,&dN,) 

+NrNv4dNz)) (30) 

which comes completely from the action of V(r). 
In coordinate-space identical considerations lead to 

and 

because the FFTs are effectively replaced by the corre- 
sponding matrix multiplications. &P includes both choices 

for .CP, the full matrix case G?,,,,, or the finite difference 
scheme &‘rFD5. Again, the case with constant mass allows 
some simplification and the expense is reduced by a factor 
of two to 

because we can assume that c!!?~z = c?~. 
One can see already from comparing Eqs. (29), (30), (32), 

(33) that the FFT looks more expensive than matrix techni- 
ques, in particular for variable inverse mass B. In order to 
make the comparison more quantitative, we have chosen 
two typical grids as they are used in nuclear deformed 
Hartree-Fock or TDHF calculations: a small grid with 
16 x 16 x 64 points and a large grid with 32 x 32 x 128 
points. This gives the relative computing times as listed in 
Table II. It is obvious that the FFT is inferior to the full 
matrix scheme in both grids for the variable inverse mass B. 
The reason is that nuclear physics does not require too large 

TABLE II 

Relative computing times for One Action of the Hamiltonian 
in Three Cartesian Dimensions 

16x16x 64 12.12 1.82 4.00 3.17 0.33 0.92 
32x32~128 15.53 8.40 44.52 23.18 1.58 12.23 

16x16x 64 3.18 0.91 2.00 0.79 0.17 0.46 
32x32~128 18.88 4.20 22.26 5.80 0.79 6.11 

16x16x 64 0 >0.91 2.00 0 >0.17 0.46 
32x32~128 0 > 4.20 22.26 0 > 0.79 6.11 

16x16x 64 6.36 1.82 4.00 1.59 0.33 0.93 
32x32~128 31.16 8.40 44.52 11.59 1.58 12.23 

Note. With the various cases estimated in Eqs. (29), (30) (32), and (33) 
using the optimised routines in each case, except for the case FD5 
on the CRAY. The second index means: B z variable mass, Eqs. (29) 
(32), m=constant mass, Eqs. (30) (33); ~Scdamping, Eq. (34); 
R = quasirelativistic, Eqs. (36), (37). The index Matr stands for the action 
with the full matrix and FD5 for the sparse matrix of the fifth-order finite 
difference scheme. The last index “3D” has been omitted to keep notation 
short. The values from Table I have been divided by 1000 to give a proper 
scale for the computing times. 
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grids. The FFT would become advantageous for the next 
larger grid 64 x 64 x 256. The comparison for the case of a 
constant mass m changes the situation. Here the FFT 
becomes competitive with the matrix technique. 

The finite difference scheme looks favourable at first 
glance if one compares computing times on the same grid. 
But that is not a fair comparison because the finite difference 
scheme is much inferior in precision. We see from Fig. 1 that 
one needs a much smaller grid spacing, dr,,, z f Ar,,,, in 
order to reach comparable precision. The finite difference 
scheme looks less favourable, if we compare it for the grid 
32 x 32 x 128 to the other schemes with the grid 16 x 16 x 64 
in Table II, and it is even more inferior because one should 
have tripled the grid for comparison and not only doubled 
it. 

6.2.2. Expense of Damping 

The action of the Hamiltonian is only one ingredient in 
static or dynamic calculations, A further step is the damping 
9 which is used in the damped gradient step (7), (8) for the 
static Hartree-Fock iteration or for the iterative inversion 
(11) in the CrankkNicholson step (10) of TDHF. The 
damping in Cartesian 3D is given in Eq. (20). It involves 
only the kinetic energy and constants. Thus exact damping 
is possible in the momentum-space representation, and, 
moreover, it is a trivial multiplication by a factor which can 
be done at almost no cost in the spirit of the estimates 
above. Damping is more complicated in coordinate-space 
representation. It requires the separable approach (21) and 
each factor a;, iE {x, y, z}, stands for a full matrix multi- 
plication in one dimension. Thus the total expense of the 
separable damping in coordinate-space is 

Although the inverse of a sparse matrix is generally a full 
matrix, the estimate (34) is too pessimistic for the fifth-order 
finite difference scheme because there is a cheaper access if 
one solves a linear equation with the sparse matrix for 9 ~ ’ 
each time the damping is required. Half of the Gaussian 
elimination, producing upper triangular form for 9 ~ ‘, can 
be done once and kept stored. The expense of the remaining 
second half is just about the expense of one sparse matrix 
multiplication if one optimizes very carefully. Thus we 
assume as an optimistic estimate that the expense of 
damping in the finite difference scheme is about the expense 
of one matrix multiplication and if we keep in mind that this 
is a lower limit; i.e., we suppose &&,, %, 3D Z I&, m, 3D. 

The resulting estimated computing times for the two grids 
considered are given in the third block of Table II. One step 
in the static iteration or in the iterative inversion of the 
dynamic calculation consists now of one Hamiltonian 

action and one damping. We see from Table II that the 
extra expense for damping in the matrix technique and no 
extra cost in case of FFT leave the lead of the matrix techni- 
que for the models with variable inverse mass B almost 
unchanged. But it shifts the conclusion to a visible advan- 
tage of the FFT for models with constant mass m. The finite 
difference scheme of fifth order is again to be compared at 
the next larger grid to take the difference in precision into 
consideration. It still loses, even with the optimistic estimate 
of the cost of damping. 

6.2.3. Quasirelativistic Hamiltonian 

The actual expense of an action of the Hamiltonian is not 
only machine dependent but also model dependent, as we 
have seen from the comparison of the variable mass 
approach and the constant mass approach. There is a 
further possibly important variant in connection with 
relativistic nuclear models [4-61. The effective Schrodinger 
equation for the Dirac wavefunctions couples spin-matrices 
and momenta in a particular way such that in the 
nonrelativistic limit [6] 

h$=o.pB(r)o~p$+ V(r)II/. (35) 

The (r. pl(/ can be worked out completely in momentum- 
space such that the momentum-space approach with FFT 
requires only twice two three-dimensional Fourier transfor- 
mations. This yields the expense 

& FFT,R,3dNx, & N,) 

= 4{N,Nz&FFT(N.x) + NzNx’FFT(Ny) 

+ NrN~‘FFT(Nz)}. (36) 

However, in coordinate space, each term in (r. p$ is a 
separate matrix multiplication. This happens twice, once 
before B and once after B. Altogether the expense is exactly 
the same as for the standard case with variable mass B, i.e., 

where again &9 E { &&, gMatr}; see also Eq. (32). 
The results for this quasirelativistic Hamiltonian (35) are 

given in the lowest block of Table II. We see that the 
momentum-space representation becomes competitive, and 
it is even advantagous for the larger grid if we include the 
cost of damping. In any case, the Hamiltonian in the form 
(35) has the great advantage that the spin-orbit force is 
already included without extra expense. One may prefer 
parameterizations of that form in large scale applications 
C61. 
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6.2.4. Full 30 Estimate 

For the case of Cartesian 3D, we have even worked out a 
full 3D comparison of the matrix technique with the third- 
order finite difference scheme which is the standard scheme 
in large scale applications. The matrices PV have been 
evaluated from the Fourier definition of the momentum 
operator. We compare in Fig. 3 precision and corre- 
sponding computing time for the two schemes at various 
grid spacings Ar. Again we used the Hamiltonian of the 
form (1) with the potentials (2) in the parametrization (3). 
The upper part of Fig. 3 shows the precision in energy as 
function of the grid spacing Ar. The figure looks very similar 
to the spherical results in Fig. 1. The data are shifted a bit to 
larger Ar. This means that the one-dimensional spherical 
test is relevant for every other dimension. It is rather a bit 
more critical than the Cartesian case which is not surprising 
because spaces with Cartesian volume element are simpler. 
The lower part of Fig. 3 shows the corresponding com- 
puting times. These times account for the total iteration 
until convergence, and not just for one step. Thus they 
already include the effect that the iteration is somewhat 
slower for smaller grid spacings Ar. It is obvious that the 
matrix techniques are a lot more expensive at a given Ar. 
However, we have to compare computing times at a given 
precision for E. Then the matrix technique is the clear 
winner. For example, the precision of the third-order finite 
difference scheme at Ar = 0.2 fm is reached with the matrix 

I 
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s 
g -29.6 - 
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E 

i= 
I 

is 

100 

50 

0.4 0.6 0.6 1.0 1.2 

Ar [fml 

FIG. 3. Comparison of matrix technique based on a Fourier definition 
of the momentum (full line) with third-order finite difference scheme 
(dashed line). Upper part shows the energy of the 1s state as function of the 
grid spacing Ar. The lower part shows the corresponding CPU-time. 
The absolute size of the box has been kept constant at N, Ar = 
N,.Ar=N,Ar=20fm. 

technique at Ar z 0.9 fm, and the latter is orders of 
magnitude faster. This conclusion applies if high precision is 
required. If poor precision is adequate, e.g., the matrix 
technique at Ar = 1.1 fm yields the same accuracy as the 
third-order finite difference scheme at Ar = 0.7 fm. Com- 
parison of computing times shows that both methods are 
equivalent at this level of precision. But remember that 
the latter comparison was done for an unacceptably low 
precision. In general, the previous conclusion persists: 
matrix techniques (or momentum representation) are in the 
end much faster for Hamiltonians with variable mass B. 

62.5. Considerations on TDHF 

The estimates for the expense of time-steps in TDHF is 
complicated by the fact that there is a much wider choice of 
strategies for solution and the chosen strategy depends very 
much on the numerical representation of the wavefunctions. 

The applications of the momentum-space techniques in 
TDHF [ 111, e.g., have used a predictor-corrector scheme 
for time-stepping. This scheme has the advantage that it can 
be performed completely within momentum-space such that 
the expense of one time-step is just the expense of one action 
of the Hamiltonian. A disadvantage is that this is an explicit 
scheme where the size of the time-step depends critically on 
the maximum energy on the grid. However, in the momen- 
tum-space representation one can easily set a cutoff in the 
kinetic energy and thus still use fairly large time-steps. An 
improvement which allows using even larger time-steps is to 
turn the predictor-corrector scheme into an implicit scheme 
by iterating the corrector. The iteration requires an inver- 
sion with the mean-field Hamiltonian which can be done 
also iteratively as indicated in Eq. (11). The expense of one 
time-step is then comparable to the expense of several static 
steps. 

The coordinate-space techniques have usually favoured 
the Crank-Nicholson step with inversion in separable 
approximation (12). This choice is advantagous for low 
order finite difference schemes because the inversion could 
be done in each time step anew by solving a sparse linear 
equation. It is still an open question which scheme is most 
appropriate for the time-step with full matrices. The 
separable approach to inversion sets a rather low limit on 
the size of the time-step. One will very probably prefer the 
Crank-Nicholson step with exact inversion in full dimen- 
sionality. This inversion will again be done by iteration (11). 
This leads also here to the conclusion that the expense of 
one time-step is comparable to the expense of several static 
steps. 

Although we see many strategies for solving the time-step 
in TDHF, all of them yield estimates for the expense com- 
parable to several static steps. Thus we can take over the 
observations and conclusions from the static case as worked 
out in the previous subsections. 
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62.6. Summary for 30 TABLE III 

The above considerations have shown that matrix 
techniques are to be preferred for models with variable 
inverse mass B, momentum-space representation with FFT 
becomes preferable for models with constant mass m, and 
both techniques are competitive for the quasirelativistic 
model. The fifth-order finite difference scheme is inferior in 
all cases. It is to be kept in mind that these conclusions are 
drawn for nuclear physics applications which do not 
demand too large grids. 

Relative Computing Times for One Action of the Hamiltonian 
in Two Axial Dimensions with the Various Cases Estimated in 
Eqs. (39) and (40) 

Occasionally there is some freedom for the decision. 
Then one has to take into account additional aspects. As 
arguments in favour of the momentum-space representation 
we can add that the number of relevant components for the 
wavefunctions can be reduced by a factor of 10. This helps 
in storage problems, in wave function handling (e.g., in a 
predictor-corrector step), and in orthonormalisation. On 
the other hand, we can add in favour of the matrix multi- 
plication that the size of the grid can be handled much more 
flexibly and is not bound to values like 16, 32, etc. Finally, 
we add a comment against finite difference schemes in a 3D 
calculation: although the expense grows much more slowly 
than with both other schemes, the number of grid-points 
grows as N3 and one needs a much larger grid to compete 
in precision. This leads to severe problems with storage of 
wavefunctions and with orthonormalisation in large scale 
problems. 

IBM 3090 VF CRAY X-MP 

N,xN, 6 FD5, L3 F watr. B I FDS, B 6 Matr, 8 

16x 64 0.66 1.70 0.12 0.44 
32 x 128 1.54 10.90 0.28 3.10 

4%. m GIMatr.m 8 FDS. “2 & Mm, m 

16x 64 0.33 0.85 0.06 0.22 
32x 128 0.17 5.45 0.14 1.55 

&X. 9 d blatr,v & FDS. Y G Marr.Y 

16x 64 >0.33 0.85 > 0.06 0.22 
32 x 128 >0.17 5.45 >0.14 1.55 

Note. Using the optimised routines in each case except for the case FD5 
on the CRAY. The lowest block contains the relative computing times for 
the damping. The index Matr stands for the action with the full matrix and 
FD5 for the sparse matrix of the fifth-order finite difference scheme. 
The last index 2D has been omitted in order to keep the notation short. 
The values from Table I have been divided by 100 to give short numbers 
for the computing times. 

6.3. 2D Axial 

A momentum-space representation is disadvantagous in 
case of axial 2D. It has to use the Bessel transformation 
for which no fast scheme exists. It has to be counted like 
one full matrix multiplication. Then the overhead of factor 
two for forward and backward transformation, see the 
above Cartesian examples, makes the momentum-space 
representation immediately inferior to a coordinate-space 
representation with full matrix multiplication. Thus we 
discard the momentum-space representation for the case of 
axial 2D. 

The Hamiltonian for the case of axial 2D is given in 
Eq. (16). For the matrix techniques 

m2 
+ B(r, z) ye + Vr, z), (38) 

the expense for one Hamiltonian action becomes 

and for constant mass m reduces to 

& $‘,,,z,ZD = N&‘(Nr) + N,6q(N;), <YE {hlatr, &D,}. 

(40) 

The damping is performed in the separable approach (18). 
This is as expensive as the action of the Hamiltonian with 
constant mass, &p,8, 2D - b,m 2D, where the estimate of -8 

’ Subsection 6.2.2 was used. 
Similar to the previous subsections, we evaluate the 

estimated relative computing times for two typical grids, a 
small one with N, x NZ = 16 x 64 and a large one with 
N,. x N, = 32 x 128. The results in Table III show that the 
matrix technique is to be preferred, because the finite 
difference scheme provides only comparable expenses at a 
doubled grid, but we need a tripled grid to achieve the same 
precision as with full matrix technique. Further arguments 
in favour of the matrix technique are: a large reduction in 
storage-space for the wavefunctions, which also speeds up 
the orthonormalization in the static case, and easier 
vectorization. 

6.4. 1D Cartesian and 1D Spherical 

The Fourier transform for a one-dimensional wavefunc- 
tion requires just b(N,) operations. The Hamiltonian is 
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given as in Eq. (28), or Eq. (31), respectively, with the 
y- and z-terms missing. Similar reasoning as before yields 

& FFT,/3,1D=4b(Nx)~ F’,B,lD=2’P 

& FFT.m.1D=2Q(Nx)~ 8.,m,lD=&’ (41) 

8FFFT. 9.1D = ‘3 6 .&‘,r).lD =c$, 

where 9 stands for 9 E { FD5, Matr}. 
The case of spherical 1D combines arguments from axial 

2D and Cartesian 1D. The momentum-space representation 
is disadvantagous for this case because it employs the 
Fourier-Bessel transformation. But this is a full matrix 
operation and the overhead of forward and backward 
transformations makes this scheme inferior. It remains to 
compare matrix techniques with fifth-order finite difference 
scheme. This comparison can directly be taken over from 
Eq. (41). 

The estimated expenses are all trivial factors of the raw 
expenses given in Table I and can be read off from there 
using Eq. (41). Note that the finite difference schemes (FD5) 
become clearly advantagous in one dimension. The expen- 
ses for the four times larger grid are still lower than the 
expenses on the small grid in both other methods. The 
storage problem which is a big hindrance for finite difference 
schemes in 3D is uncritical in 1D. In addition, there are 
particularly efficient techniques for the inversion of the 
fifth-order kinetic energy in one dimension [24,25]. And 
furthermore, round-off errors are not so dramatic in one 
dimension such that one may even consider higher order 
finite difference schemes. Altogether, finite difference 
schemes are the method of choice in one-dimensional 
problems. And that is exactly what has been used success- 
fully for a long time for this type of calculation [25]. 

7. CONCLUSION 

We have studied standard gridding techniques for solving 
the Schrodinger equation using a representation in coor- 
dinate- or momentum-space. The central task in all schemes 
is to provide a reliable description of the momentum 
operators and subsequently of the kinetic energy. The 
momentum-space technique combines with the fast 
Fourier transformation (FFT) for fast switching from 
momentum-space (where the kinetic energy is evaluated) to 
coordinate-space (where local potentials are evaluated). 
The coordinate-space techniques represent momenta 
by matrices. We consider finite difference schemes which 
generate sparse momentum-matrices, and B-splines or 
Fourier definition which generate fully packed momentum- 
matrices. 

We have compared these schemes with respect to preci- 
sion and computing times. The comparison of computing 

times was done in a mixed approach: computing times for 
the basic operations in one spatial dimension have been 
evaluated on two existing vector machines, and IBM 3090 
VF and a CRAY X/MP, and from these numbers, estimates 
for the complete operations (action of the Hamiltonian, 
damping) have been worked out analytically in many dif- 
ferent dimensions. This procedure gives interesting insights 
and provides valuable indications for a decision on the 
optimal schemes. Of course, this method misses the maxi- 
mum possible speed which may be reached by laborious 
optimization of a code for each of the various techniques. 
We assume that possible gains in speed are about equal in 
each technique such that our procedure gives reliable 
estimates of the expected relative computing times. 

The comparison of the precision as a function of the grid- 
spacing has shown that both, the Fourier definition of the 
momentum as well as the B-splines representation, provide 
almost the same precision and that both are very precise 
schemes, superior to the finite difference schemes. Both 
winning schemes have reached the point where the precision 
of the kinetic energy is very accurate and where the local 
treatment of the potential sets the limits. One may think of 
improving the precision further by nonlocal handling of the 
potentials. This remains an open question. 

The comparison of computing times depends on the 
form of the Hamiltonian. We have distinguished three 
cases, variable mass, constant mass, and quasirelativistic 
Hamiltonian. The conclusions differ for the three cases. The 
conclusions also depend, of course, on the size of the grid 
and of the dimensionality of the problem. In all our com- 
parisons we have considered grid sizes of N = 16, . . . . 128 as 
they occur typically in nuclear physics. There are many 
detailed pro’s and con’s in the various cases. We try to give 
here a condensed record of results: 

Cartesian 3D. The coordinate-space representation 
with full matrices for the momenta is to be preferred 
for variable mass B; the momentum-space representation 
with FFT becomes advantageous for constant mass m; 
both methods are comparable for the quasirelativistic 
Hamiltonian. The finite difference scheme is to be discarded 
in every case. 

Axial 2D. The coordinate-space representation with full 
matrices for the momenta is to be preferred in any case. 

Cartesian and spherical 1D. Finite difference schemes of 
at least fifth order are the preferred technique in any case. 
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